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Abstract The electrochemical reductive desorption of
the self-assembled monolayers of 3-mercaptopropionic
acid in an aqueous alkaline solution gives a sharp peak
with the full width at half maximum of about 20 mV
irrespective of the type of cations in a linear scan
voltammogram. This suggests that a strong attractive
interaction exists between negatively charged carboxy-
late groups in the self-assembled monolayer surface
due to the counterion binding, which not only simply
stabilizes the adsorbed carboxylates but also makes
the interaction between the adsorbed thiolates even
attractive possibly by forming a two-dimensional ionic
crystal. The effect of tetraalkylammonium ions on the
shape of the voltammograms was also examined.
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Introduction

Among alkanethiols and their thiol derivatives that
form self-assembled monolayers (SAMs) on a metal
surface, ω-carboxylalkanethiols [HOOC-(CH2)nSH]
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are unique in that their SAMs have distinctive sur-
face properties, such as hydrophilicity, wettability,
chemical reactivity, and an affinity towards positively
charged proteins, e.g., cytochrome c. This fact makes
HOOC-(CH2)nSH highly useful and attractive in de-
signing SAMs for a variety of purposes [1–66]. One
of the intriguing features of SAMs formed by HOOC-
(CH2)nSH is that the reductive desorption of the SAM
gives a sharp peak on a cyclic voltammogram recorded
in an aqueous alkaline solution, e.g., 0.5 mol dm−3

KOH. The full width at half maximum (FWHM) is
about 20 mV or even smaller, particularly when the
number of methylene units, n, is as small as 1 or 2
[13–15]. This narrow FWHM suggests the presence of
a strong lateral attractive interaction between adsorbed
thiolates [67]. Such an attractive interaction might seem
counterintuitive, as the surface pK value of the ω-
carboxyl groups in the SAM is estimated to be about
7 ± 1 [2, 68–75], and all the ω-carboxyl groups are
deprotonated to bear negative charges in an alkaline
solution in recording voltammograms of reductive des-
orption. These negative charges are, in fact, neutralized
by counterions that bind to the negatively charged
SAMs, as confirmed by X-ray reflectivity [12], atomic
force microscopy [76], quartz crystal microbalance [7],
and Raman spectroscopy [32, 49, 77, 78].

However, the neutralization does not suffice to give
rise to the attractive interaction among adsorbed thi-
olates. We suggested the possibility of the formation
of a two-dimensional ionic crystal on the surface of
ω-carboxylalkanethiol SAMs due to the counterion
binding to explain the titration curves for the SAMs
with an aqueous NaOH solution [73]. In the present
paper, we report the effect of the nature of counterions
on the reductive desorption for further examining the
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possible formation of a quasi-two-dimensional crystal
on the SAM.

Experimental

Materials

3-Mercaptopropionic acid (MPA) was purchased
from Sigma-Aldrich (St. Louis, MO, USA) and was
used without further purification. Monohydrates of
LiOH, RbOH, and CsOH were purchased from
Nakarai Tesque (Kyoto, Japan). Aqueous solutions
of (CH3)4NOH (15%), (C2H5)4NOH (10%), and
(C4H9)4NOH (0.5 mol dm−3) were purchased from
Wako Pure (Osaka, Japan). All other chemicals were of
reagent grade. Au substrates were prepared on freshly
cleaved mica surface by vapor-deposition at a base
pressure of 1 × 10−6 Torr. The temperature of a mica
sheet was maintained at 580 ◦C during the deposition.
Au-deposited mica sheets were annealed at 550 ◦C
for 6 h before use. Other details of the preparation
have been described previously [13]. Thiol-adsorbed
Au electrodes were prepared by immersing a Au sub-
strate in a 1-mmol dm−3 ethanol solution of a thiol
overnight under nitrogen atmosphere.

Methods

Cyclic voltammograms (CVs) of the reductive desorp-
tion were recorded in 0.5 mol dm−3 MOH, where M
is Li+, Na+, K+, Rb+, Cs+, (CH3)4N+, (C2H5)4N+,
or (C4H9)4N+ using a Ag–AgCl–saturated KCl elec-
trode as the reference electrode and a platinum wire
as the counter electrode. The liquid junction between
a test solution and the reference electrode was made
through a glass frit filled with a saturated KCl solution.
The applied potential reported hereafter is referred to
the Ag–AgCl–saturated KCl electrode with this liquid
junction. The current was taken to be negative when
the reductive desorption proceeded. A gold substrate
was mounted at the bottom of a cone-shaped cell using
an O-ring of 4-mm diameter and a cramp [79]. The
solution in the cell was deaerated by bubbling Ar for
10 min. All cyclic voltammetry measurements were
made at 24±2 ◦C.

X-ray photoelectron spectroscopy (XPS) measure-
ments were made at a base pressure of 1 × 10−8 Torr
using a X-ray photoelectron spectrometer (ULVAC
Phi, 5500MT) with an Mg Kα X-ray source. Binding
energies were referenced to the Au 4f7/2 core level.
Au substrates modified with MPA were rinsed with

ethanol and, after drying in air, immersed in an aqueous
alkaline solution for 10 min. The substrates were then
rinsed again with ethanol prior to XPS measurements.

Scanning tunneling microscope (STM) images were
recorded in an aqueous phosphate buffer solution us-
ing a PicoSPM-STM300A (Molecular Imaging) with a
Nanoscope III (Digital Instruments, Tonawanda, NY,
USA) as a controller equipped with a low-current unit
(model: CSTMLC, Digital Instruments). Pt–Ir tips were
electrochemically etched in 15% CaCl2 and then coated
with Apiezon wax. STM imaging was made in the
constant-current mode. A Pt wire and a silver wire
were used as counter and pseudoreference electrodes,
respectively. The potential with respect to the silver
wire was converted post hoc to that referred to a Ag–
AgCl–satd.KCl electrode.

Results and discussion

Figure 1 shows CVs recorded at the scan rate of
20 mV −1 for the reductive desorption of MPA–SAMs
from the Au surface recorded in aqueous solutions
containing different alkali hydroxide, LiOH (curve a),
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Fig. 1 CVs for reductive desorption of MPA SAMs in 0.5 mol
dm−3 LiOH (a), NaOH (b), KOH (c), RbOH (d), and CsOH (e).
Scan rate of the voltage: 20 mV s−1
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Table 1 Parameters of reductive desorption of MPA in aqueous
alkaline solutions

Cations Peak potential / FWHM / Charge /
mV mV μC cm−2

Li+ -728 ± 5 18 ± 4 96 ± 2
Na+ -708 ± 13 23 ± 4 93 ± 1
K+ -702 ± 4 23 ± 4 91 ± 12
Rb+ -706 ± 4 18 ± 2 95 ± 5
Cs+ -681 ± 8 21 ± 4 77 ± 7

NaOH (curve b), KOH (curve c), RbOH (curve d), and
CsOH (curve e). In each voltammogram, a sharp peak
of the reductive desorption of adsorbed MPA SAMs
appeared around -700 mV. A broad hump visible in the
case of RbOH is probably due to the impurities origi-
nally contained in RbOH·H2O. Table 1 summarizes the
values of peak potential, FWHM, and charge calculated
from the peak area.

One of the most notable features in these voltam-
mograms is the narrow FWHM of about 21 ± 3 mV
irrespective of the type of the cation. This value is
comparable to the value, 20 mV, found in the re-
ductive desorption of the alkanethiolate SAMs hav-
ing the number of a methylene moiety greater than
10, long enough for exhibiting strong lateral attrac-
tive interaction due to the van der Waals force be-
tween the tightly packed alkyl chains [67]. Similar
narrow peaks have also been found in CV of the
reductive desorption of other ω-functionalized alka-
nethiol SAMs having charged head groups, e.g., 2-
mercaptoethanesulfonic acid (MES) [80], a mixture of
MES and 2-aminoethanethiol [81, 82], and cysteine
[83]. A common possible mechanism of all these cases is
a strong lateral attraction between adsorbed molecules.

The observed narrow peak width in the present case
therefore strongly suggests the presence of the attrac-
tive interaction between adsorbed MPA molecules in
contact with an aqueous alkaline solution. We note
that the charge neutralization itself is not enough to
explain the narrow width because the adsorption in
the absence of the lateral interaction leads to a much
broader desorption peak; the FWHM is 120 mV in case
of the Langmuir isotherm [67, 84].

Because the van der Waals interaction between
adsorbed MPA is weak, other attractive interactions
should exist, such as hydrogen bonding and electro-
static stabilization through counterion binding. In a
strongly alkaline solution, it is highly probable that
counter cations on the dissociated MPA SAM are or-
dered to form a quasi two-dimensional regular array.

For example, if we assume a (
√

3 × √
3)R30◦ struc-

ture of MPA on Au(111), an ideal 2D arrangement
of counterions would be the same (

√
3 × √

3)R30◦
structure, where each counterion occupies a three-fold
hollow site of a triangle formed by three adsorbed
MPAs. Unlike a crystal, however, the degree of or-
dering of the counterions and ω-carboxyl groups of
the SAM is presumably not as regular as that of ionic
crystals. Counterion binding to ω-carboxylate in the
16-mercaptohexadecanoinc acid SAM on Au(111) has
been first confirmed by Li et al. [12] from X-ray reflec-
tivity measurements, although no indication of in-plane
order in the counterion multilayer was obtained. Using
XPS, Himmel et al. found the 1:1 binding of K+ to a
carboxyterphenylmethanethiol SAM [85]. From XPS
measurements, we found the ratios of the counterion to
the S atom of adsorbed MPA were estimated to be 1.89,
1.50, and 1.26 for Na+, K+, and Cs+, respectively. These
values are greater than unity. However, considering
the electron collection efficiency, which we did not take
account of, we believe that these data support the 1:1
stoichiometry between alkali metal ions and adsorbed
MPA molecules.

In Raman spectroscopy studies of the SAMs of
MES on Ag, Kudelski found that, in aqueous alkaline
solution, a MES SAM forms a salt-like MES mono-
layer with coadsorbed metal cations, which lose some
hydration water molecules [77, 86], whereas the MPA
monolayer is less ordered on polycrystalline Ag [32,
86]. Because the reductive desorption of MES from
Au(111) gives 20 mV for FWHM for the peak on a
voltammogram [81], it is likely that the ordering of
MPA SAM on Au(111) in an aqueous alkaline solution
is similar to that of MES to give a similar electrosta-
tic interaction between negatively charged adsorbed
thiols.

The role of counterion binding to the shape of the
voltammograms was also obtained by measuring the
reductive desorption in aqueous solutions at different
pH values (Fig. 2). Lowering of pH caused a remark-
able shift of the peak potential to the positive direction,
which is related to the protonation equilibrium of the
desorbed thiolates [87]. Simultaneously, the significant
peak broadening is clearly discerned in the voltammo-
grams. The change in FWHM is in parallel with the
decrease in the capacitance [73] as shown in Fig. 3.
The latter change reflects the protonation equilibrium
of adsorbed MPA at the ω carboxyl group, as reported
previously [73]. Obviously, the decrease in the number
of counterions due to the protonation of a small frac-
tion of the ω carboxyl group of adsorbed MPA results
in the peak broadening. This suggests that the loss of
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Fig. 2 CVs for reductive desorption of MPA SAMs in phosphate
buffer of different pH values at the ionic strength of 0.2 mol
dm−2. The solution at pH = 13.18 is 0.2 mol dm−3 NaOH. Scan
rate of the voltage: 20 mV s−1

global regularity of the two-dimensional arrangement
of the counterions drastically reduces the lateral attrac-
tive interaction.

The charge under the peak, 94 ± 2 μC cm−2, did
not depend on the type of counterions, with a possible
exception of 77 μC cm−2 in the case of CsOH (Table 1).
These values are greater than 74 μC cm−2 expected
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Fig. 3 Dependence of FWHM of the voltammetric peak in re-
ductive desorption of MPA on pH (•). Solid line shows double-
layer capacitance values in Kakiuchi et al. [73]

in the adsorption of thiolates forming (
√

3 × √
3)R30◦

structure. In fact, from STM imaging shown below, the
structure of adsorbed MPA SAMs of our sample is not
exactly (

√
3 × √

3)R30◦, but surface density of MPA
is similar to that of (

√
3 × √

3)R30◦. The contribu-
tion of the charging current to the total peak area in
Table 1 is thus judged to be as large as one third of
the peak area. Such a high fraction of charging current
is associated with the strong dependence of desorption
on the applied potential, which may be likened to the
phase transition [67]. The large contribution of charging
current to the reductive desorption is an indication of
the presence of strong lateral interaction, presumably
due to the two-dimensional crystal on the MPA SAM
in contact with an aqueous alkaline solution.

The peak potential, Ep, slightly shifted from
−728 mV for LiOH to −681 mV for CsOH when the
ionic radius of the cation was increased. The position of
the peak primarily reflects the adsorption Gibbs energy
[88]. The positive shift of Ep means that adsorbed MPA
molecules are more readily desorbed with increasing
the ionic radius of alkali metal ions in the solution. A
possible explanation is that the desorbed MPA dianions
associate with alkali metal ions in the solution to form
monovalent anions. Such ion-pair formation should
facilitate the desorption to shift the peak potential to
the positive direction. In other words, desorbed MPA
dianions appear to be more effectively stabilized by Cs+
than with strongly hydrated Li+.

Effect of tetraalkylammonium ions for reductive
desorption

In reductive desorption of the SAMs in an aqueous al-
kaline solution, counterions are supposed to be bound
to the carboxylates exposed to the solution for charge
neutralization without changing the two-dimensional
arrangement of adsorbed MPA in the SAM. In this
situation, the size of counterions should be important
for the effective neutralization. For example, if the
thiolate moiety of MPA takes a (

√
3 × √

3)R30◦ struc-
ture on Au(111), it would be geometrically difficult for
ions whose ionic radii is greater than Cs+ to occupy
interstitial sites, unlike the case of alkali metal ions.
The radius of (CH3)4N+ ion, 0.26 nm, is too large
to sit in the center of triangle formed by three MPA
moieties, while Cs+, 0.17 nm, can do so. Presumably,
the steric restriction forces tetraalkylammonium ions
to be located above the surface of carboxyl groups,
and the electrostatic stabilization would become more
difficult with increasing the size of counterions. With
this expectation, we examined the reductive desorption
of MPA SAMs in aqueous solutions of (CH3)4NOH,
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(C2H5)4NOH, and (C4H9)4NOH. Voltammograms for
the reductive desorption in 0.5 mol dm−3 (CH3)4NOH,
(C2H5)4NOH, and (C4H9)4NOH, are shown in Fig. 4.
The desorption potential is about 100 mV more nega-
tive than those in alkali metal hydroxide solutions. In
the case of (CH3)4NOH and (C2H5)4NOH, the peak
split into two. This splitting was reproducible, though
the relative peak heights varied from one sample to
another. The charge calculated from the peak area was
about 10% smaller than those recorded in alkali metal
hydroxide solutions. Relevant parameters of these
desorption peaks are summarized in Table 2.

In contrast to a simple expectation that the steric
hindrance against the two-dimensional crystal causes
broader desorption peaks, as are the cases at lower pH
values in Fig. 2, the FWHM was very small, 16 mV,
in the case of (C4H9)4NOH, although the radius of
(C4H9)4N+ is 0.7 nm [89]. On the other hand, the MPA
moieties in the SAM in tetraalkylammonium hydroxide
solutions should be fully dissociated, as the surface
pK value is about 8 (Fig. 3). To neutralize this high
surface charge density of about 70 μC cm−2, a mono-
layer of counterions is not enough, unlike the case of
alkali metal ions, and the double layer thickness should
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Fig. 4 CVs of the reductive desorption of MPA SAMs in
0.5 mol dm−3 aqueous (CH3)4NOH (a), (C2H5)4NOH (b), and
(C4H9)4NOH (c). Scan rate of the voltage: 20 mV s−1

Table 2 Parameters of reductive desorption of MPA in 0.5 mol
dm−3 aqueous tetraalkylammonium hydroxide

Cations Peak potential / FWHM / Charge /
mV mV μC cm−2

(CH3)4N+ -804 ± 15 72 ± 2
-833 ± 17

(C2H5)4N+ -779 ± 10 82 ± 10
-808 ± 14

(C4H9)4N+ -731 ± 12 16 ± 2 81 ± 12

be much thicker than the Debye length, 0.43 nm for
0.5 mol dm−3 in an aqueous solution at 25 ◦C.

The electrical double layer of an aqueous solution
of (C4H9)4NCl or (C4H9)4NBr in contact with mercury
or other metal electrodes is unique in that the adsorp-
tion of these ions is accompanied with coadsorption of
anions [90], which can result in the capacitance pit of
a few microfarads per square centimeter in differen-
tial capacitance vs potential curves [91]. The densely
adsorbed multilayer of (C4H9)4N+ with inclusion of
smaller anions is the most probable structure of the
low capacitance value. Most of the studies of this kind
have been conducted with tetraalkylammonium halides
or sulfates. A similar low capacitance has also been
found in the case of tetrabutylammonium hydroxide on
gold [92]. Interestingly, the capacitance shows a very
slow time dependence on the order of tens of minutes,
which seems to be required for a long-range ordered
multilayer structure [92].

It is therefore highly likely that, in the present case,
the negatively charged MPA SAMs are overlaid with
a multilayer of tetraalkylammonium ions because a
monolayer of tetraalkylammonium ions is geometri-
cally insufficient to neutralize the negative charges on
the MPA SAM as described above. The reductive des-
orption of the MPA SAM should then be accompanied
by the desorption of tetraalkylammonium ions. First,
such a codesorption of tetraalkylammonium ions would
make the desorption potential more negative, because
of their hydrophobicity, as is the case of adsorption
of organic compounds. Second, the desorption of the
ordered multilayer should be cooperative to give a
narrower peak width, as exemplified in the desorption
in the presence of (C4H9)4N+ (Fig. 4). The desorption
of the multilayer of counterions, not the desorption of
MPA–SAM per se, probably determines the shape of
the desorption peak. We note that a sharp desorption
peak in capacitance vs potential curves has also been
found in the desorption of (C4H9)4N+ from mercury
[91], as well as from gold [92].
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The shift of the desorption potential to slightly pos-
itive potentials with increasing size of tetraalkylammo-
nium ions (Fig. 4) can be interpreted in terms of the
counterion binding to the desorbed MPA dianions, as
is the case of the peak shift with cation size in Fig. 1.

The split of the peak in the case of (CH3)4NOH
and (C2H5)4NOH is possibly caused by the coadsorp-
tion of a contaminant, such as K+, and (CH3)4N+ or
(C2H5)4N+ in the different region of the MPA SAM.
To examine this possibility, the desorption of a MPA
SAM was studied in mixed alkaline solutions of KOH
and (C2H5)4NOH. The results in Fig. 5 at different
mixing ratios keeping the total hydroxide concentration
constant at 0.5 mol dm−3 show that, with increasing
the ratio of (C2H5)4NOH, the desorption peak shifted
to the negative potentials and the FWHM simulta-
neously narrowed up to the mixing ratio of 1:99 for
KOH/(C2H5)4NOH. A further increase in the ratio of
(C2H5)4NOH results in the broadening (curve 5) and
splitting of the peak into two (curves 6 and 7).

It is noteworthy that even the mixing ratio of 1:1
caused the sharpening of the peak and shifted the

�Fig. 6 STM images of an MPA SAM in a 30-mmol dm−3 phos-
phate buffer solution (pH = 7.15). c Part of the Fourier filtered
image of b. Electrode voltage, −0.3 V; bias voltage, 0.7 V; set
point, 650 pA

b

a

c

0 60 nm

0 10 nm

0 5 nm
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peak to the negative potential by 35 mV. This suggests
the preferential adsorption of (C2H5)4N+ ions on the
MPA surface. At the ratio of 1:99, the majority of the
counterions is (C2H5)4N+. The shoulder or splitting
peaks in Figs. 4 and 5 are therefore not caused by the
coadsorption of (C2H5)4N+ and K+ but are indicative
of the inhomogeneity in (C2H5)4N+ multilayer.

STM imaging of the structure of MPA SAM

Figure 6 shows in-situ STM images of a MPA SAM
recorded in 30 mmol dm−3 phosphate buffer at
pH = 7.15 at E = −0.3 V. A clear pinstripe pattern is
seen in Fig. 6a. An enlarged view in Fig. 6b shows that
four lines of dots form a bundle corresponding to one
stripe. A Fourier filtered image in Fig. 6c shows that the
packing density is close to (

√
3 × √

3)R30◦.
It has been known that MPS SAMs on Au(111) ex-

hibit different types of two-dimensional arrangements
in STM imaging, p × √

3 [93] with p = 3.6–4.8 [94], a
rhombic (3 × 3) with the packing arrangement of MPA
close to that of (

√
3 × √

3)R30◦ [95], and (2
√

3 × √
7)

for the double row and (2
√

3 × 4) symmetry [94].
As the structure of MPA SAMs depends on the

method of preparation and the time, in particular, after
the initial formation of the monolayer [32, 77, 78],
it is not surprising to see several different structures
of MPA SAMs. These different structures do not,
however, seem to be reflected in the reductive des-
orption behavior because the reductive desorption of
MPA SAMs in aqueous alkaline solutions always gives
a single peak with similar FWHM values. More de-
tailed studies using chronoamperometry with continu-
ous monitoring of high-speed STM imaging will be able
to reveal the correspondence between the molecular-
level two-dimensional arrangements of MPA in SAMs
and reductive desorption characteristics.

Conclusions

A narrow peak width in reductive desorption of ad-
sorbed MPA from Au(111) in an aqueous alkaline
solution, irrespective of the type of cations, is strongly
indicative of the presence of strong electrostatic sta-
bilization of the adsorbed MPA molecules. The for-
mation of the two-dimensional ionic lattice has been
proposed as a putative mechanism for the strong
lateral attractive interaction between the adsorbed

MPA molecules. In the reductive desorption in an
aqueous tetraalkylammonium hydroxide, the cooper-
ative desorption of layered tetraalkylammonium ions
is likely to determine the location and shape of the
desorption peak in voltammograms. This shows an
intriguing example of charge neutralization by bulky
counterions at the interface. The present counter-
binding effect on the reductive desorption is a special
case showing the significance of the electrostatic in-
teraction of adsorbed cations and anions in electrode
reactions, which is one of the subjects pioneered by
Petrii and coworkers [96–98] in relation to the Frumkin
effect.
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